Polylogarithms and motivic Galois groups

نویسنده

  • A. B. Goncharov
چکیده

This paper is an enlarged version of the lecture given at the AMS conference “Motives” in Seattle, July 1991. More details can be found in [G2]. My aim is to formulate a precise conjecture about the structure of the Galois group Gal (MT (F )) of the category MT (F ) of mixed Tate motivic sheaves over Spec F , where F is an arbitrary field. This conjecture implies (and in fact is equivalent to) a construction of complexes Γ(F, n)Q that should satisfy all the Beilinson-Lichtenbaum axioms modulo torsion. In particular, we get a hypothetical description of Kn(F )⊗Q by generators and relations that generalize the definition of Milnor’s K-groups. In the case when F is a number field this together with the Borel theorem implies

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periods and mixed motives

We define motivic multiple polylogarithms and prove the double shuffle relations for them. We use this to study the motivic fundamental group π 1 (Gm −μN ), where μN is the group of all N -th roots of unity, and relate the structure of π 1 (Gm − μN ) to the geometry and topology of modular varieties Xm(N) := Γ1(m;N)\GLm(R)/R ∗ + ·Om for m = 1, 2, 3, 4, .... We get new results about the action o...

متن کامل

Multiple ζ-Values, Galois Groups, and Geometry of Modular Varieties

We discuss two arithmetical problems, at first glance unrelated: 1) The properties of the multiple ζ-values ζ(n1, . . . , nm) := ∑ 0 1 (1) and their generalizations, multiple polylogarithms at N-th roots of unity. 2) The action of the absolute Galois group on the pro-l completion π (l) 1 (XN ) := π (l) 1 (P \{0, μN ,∞}, v) of the fundamental group of...

متن کامل

0 Multiple ζ - values , Galois groups , and geometry of modular varieties

We discuss two arithmetical problems, at first glance unrelated: 1) The properties of the multiple ζ-values nm m nm > 1 (1) and their generalizations, multiple polylogarithms at N-th roots of unity. 2) The action of the absolute Galois group on the pro-l completion π (l) of the fundamental group of XN := P 1 \{0, ∞ and all N-th roots of unity}. These problems are the Hodge and l-adic sites of t...

متن کامل

The Motivic Thom Isomorphism

The existence of a good theory of Thom isomorphisms in some rational category of mixed Tate motives would permit a nice interpolation between ideas of Kontsevich on deformation quantization, and ideas of Connes and Kreimer on a Galois theory of renormalization, mediated by Deligne’s ideas on motivic Galois groups.

متن کامل

Multiple polylogarithms and mixed Tate motives

from analytic, Hodge-theoretic and motivic points of view. Let μN be the group of all N -th roots of unity. One of the reasons to develop such a theory was a mysterious correspondence (loc. cit.) between the structure of the motivic fundamental group π 1 (Gm − μN ) and the geometry and topology of modular varieties Y1(m;N) := Γ1(m;N)\GLm(R)/R ∗ + ·Om Here Γ1(m;N) ⊂ GLm(Z) is the subgroup fixing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013